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Abstract

The inviscid evolution of a two dimensional

shear layer is simulated numerically by a scheme
based on a kinematic decomposition of the unsteady

flow. Lagrangian and Weber transformations of the
incompressible Euler equations result in a Clebsch

representation that separates the flow field into ro-
tational and irrotational components. These trans-
formations produce the initial construction of the
flow field and define its subsequent evolution.

Introduction

As numerical schemes become more accurate

and efficient, computational simulations are being
used to investigate flow phenomena of increasing
complexity. Analytical methods, while both pow-
erful and informative, are often difficult to apply

to nonlinear problems on complex geometries. Nu-
merical techniques, however, allow for the modelling

of both geometric and nonlinear complexities. Un-
fortunately numerical consistency exists only within
the limit of infinitesimally small time steps and

grid spacings, where the likelihood of having re-
sources large enough to accomplish such calculations
remains remote. Thus practical difficulties occur
when trying to extract physically meaningful results
from simulations of only medium fineness and accu-
racy. Consequently, one hopes to improve the per-
formance of more moderately accurate schemes (typ-

ically second or third order accurate) by incorporat-
ing problem-specific flow physics into the numerical
solution procedure.

Most currently used inviscid schemes are based
on the one dimensional Euler equations and have un-

questionably good shock capturing capabilities. Un-
fortunately their ability to resolve unsteady vortical
flows is not yet of equal stature. First, the concept
of vorticity does not exist in one dimension and sec-
ond, correct wave propagation, a major requirement
of any unsteady simulation, is not easily satisfied in
multidimensions.

Central differenced schemes gather information
from all directions and are often the methods of

choice for elliptic flow calculations. Their use in hy-
perbolic calculations, however, requires an explicitly
added artificial dissipation which, unless tailored ju-

diciously, can significantly reduce spatial accuracy.
Upwind differenced schemes produce superior

one dimensional results since the flow field can be

resolved along grid directions coincident with the

physically upwind ones. Unfortunately, extending
these concepts to multidimensions is made difficult

by the infinite number of directions and waves from
which one must choose to upwind. In the present

work, the incompressible Euler equations are decom-
posed into scalar elliptic and hyperbolic equations to
take advantage of the benefits of both central and
upwind differenced numerical techniques.

Historically, the value of a velocity decom-
position scheme could be found in its ability to
add rotational effects to steady potential flow
calculations. 1,2,a,4 However, the use of velocity de-

composition schemes became less common as shock
capturing became more refined. With the exception
of helicopter wake/rotor interactions, 5'6 where the
need to conserve vorticity often outweighs any desire
to calculate strong shocks, most inviscid compress-
ible flows are currently simulated with shock cap-
turing schemes. However, despite being restricted
to flows with weak shocks, calculations of unsteady

vortical flows, such as those associated with fluid
mixing, should benefit from a velocity decomposi-

tion approach.
An obvious decomposition is the one that

splits the flow into rotational and irrotational
components, v,s Initially this decomposition seems
appealling since one hopes to have split the flow
into acoustic and vortical fields. Unfortunately, this

splitting is not unique since the rotational compo-
nent can be constructed from the sum of the vor-

tical field and any arbitrary irrotational field (pro-
vided this irrotational field is also subtracted from

the acoustic component). Thus one cannot assume
to have split the flow field into acoustic and vorti-
cal components exclusively. 9 The flow equations are,
however, decomposed into scalar elliptic and hyper-
bolic ones, thereby isolating the vortical field within
the rotational component which can then be con-
vected by an appropriate upwind scheme.

Thus the hope of this work is to produce a set
of kinematically decomposed flow equations, suited
for the simulation of unsteady vortical flows, and

solved by appropriate central and upwind differ-
enced numerical schemes. To test this approach,

a steady shear flow is constructed analytically, re-
produced numerically, and then perturbed by an
unsteady inflow boundary condition. The invis-
cid evolution of these inflow disturbances is then

simulated from small amplitude wave to nonlinear
rollup. The irrotational component of the flow is
constructed from the velocity potential solution of a



centraldifferencedcontinuityequation.Thisequa-
tion is solvedby anapproximateLU factorization
scheme that is written within the framework of the

multigrid method. The rotational component of the
flow is represented by a series of complex-lamellar
fields whose components are convected by an up-
wind differenced material derivative. The nonlinear

interaction between these components is captured by

coupling the rotational and irrotational fields during
each time step of the unsteady calculation.

Analysis

The incompressible Euler equations can be writ-
ten in the Cartesian coordinate system (x, y) as

V. 6. = 0 (1)

Dui COui
Dt -- Ot + (if" V)ui = -1Vp (2)

P

where 6" = (u, v) are the Cartesian velocity compo-
nents, p is density, p is pressure, and the material
derivative is defined as:

D 8
D'-t = 0"t + (6". V) (3)

Lagrangian coordinates (X, Y) satisfy

DX DY

0"-"7"= "_- = 0 (4)

where the Cartesian/Lagrangian transformation ma-
trix is defined as:

cOxi
J = -- (5)

cOx 

Linear momentum, Eq.(2), is multiplied by the ma-
trix J to produce the following tensor equation (sum

over repeated indices):

D i" cOxi_ cO (u__) 1 COpJ = -f27 p (61

which can then be integrated as follows:

such that

(7)

u,-ff_j - a t (X, Y) = cOXi j\ 2 - dt
(8)

where aj is a constant of integration dependant on
the material coordinates (X, Y). If one defines the
Weber transformation: l°Jl

2
De u i p

Dt 2 p
(9)

Eq.(8) can then be written:

cOxi cO¢

ui-ff--_"-vuAj= Aj + cO--_j (10)

where Aj is a constant of integration and

DAj
Dt - 0 (11)

Eq.(10) can now be multiplied by the inverse of ma-
trix J to produce the Clebsch decomposition:

A cOXj (9¢ (12)-,= j-bW +

The rotational velocity field at t = to is defined as:

(13)

and if one sets Xi = xl at t = to, then u_ ° = A i
Eqs.(11) and (12) become

Du,.O
____z_,= o (14)

D_

and
cO¢

= (15)
Ozi

An unsteady, incompressible, inviscid vortical flow
can now be described by the scalar convection equa-
tions, Eqs.(4) and (14); continuity, Eq.(1); and the
Clebsch decomposition, Eq.(15); provided the initial
condition Xi = zi is specified at t = to.

Unsteady Convection Scheme

Convection equations (4) and (14) can be writ-
ten as the decoupled scalar system:

OW COF COG

-6 _ -6 _y = 0 (16)

This equation is solved by a cell-centered finite vol-
ume scheme that constructs a piecewise linear distri-
bution over each of the finite volumes; characteris-
tically convects information to an intermediate time
level; and updates the cell-centered variables with a
midpoint rule time integration.

To insure the production of a nonoscillatory so-
lution, at least directionally, the piecewise linear dis-
tribution is constructed in a nonosciilatory manner.

To avoid excessive amounts of damping, this dis-
tribution must be at least uniformly second order
accurate. A one-dimensional interpolation can be
written:

o



W -- _ -t- S_(z - zi) (17)

where S_ is the slope over each finite volume. The
slope associated with Harten and Osher's uniformly
second order accurate UNO2 scheme 12 is written:

Median(O, W:+ll 2 - Wi, I4_ - W:_112) (18)
s[ = zxx/2

where W_+ll 2 is obtained from a nonoscillatory

quadratic interpolation:

W_+ll 2 = 0.5(Wi + Wi+l) - 0.25Di+lD

where

(19)

Di+ll_ = minmod(Di, Di+l) (20)

Di = Wi+l - 2Wi + Wi-l

and

minmod(a, b) =

sign(a)maz(O, sign(ab)min(la[, Ibl)) (21)

Surface data is evaluated at time level n + 1/2 by

following characteristics back to their spatial loca-
tions at time level n. For positive convection speeds
the surface data at time level n + 1/2 is written:

must be satisfied at each time step and produces the
velocity potential ¢. This equation is solved by the
approximately LU factored scheme:

[1- pa(6 + + 6+)] • [1 +/za(df: + 6_')] A¢ij

= _(6_. + 6yv)_ (25)

where A¢ii =¢ij --¢ij; P and a are scalar constants
of o(1); w is a relaxation parameter; and $+, 6-,
and 6 are forward, backward, and central difference
operators. The residual, Eq.(24), is approximated
by a finite volume formulation that constructs fluxes
on the faces of each mesh cell. The scalar system

is then solved by two explicit sweeps through the
domain, similar to the procedures developed for two
factored implicit time marching schemes. 1s'14

To illustrate the potential convergence proper-
ties of this scheme, a yon Neumann stability analysis

is performed on the one dimensional equation:

62"¢--¢- 0 where ¢'_ = G'_e i#xj
6X 2

The approximate LU factored scheme

[.-,o,:] [1 --
has the growth factor

___( ui+ll2d At_
t_n+l/2 - W2, S _.. 1
"'i+l12d - *_ + ,J Az )

Vi+ llgj At
- _ 2

(22)

Once the surface data and their fluxes are con-
structed at the time level n + 1/2, the cell-centered

values are updated by the midpoint rule:

z wn+ll2 Fn+l/2

W2. +l = W,P. - At ( " _+ll_,L__. i-11_,1
',J "_ \ Az

Gn+l/2 Gn+ll2 \
id+l/2.--___ id-112 _

+ zxy /

(23)

where F = Wu and G = Wv.

Steady State Potential Scheme

The continuity equation:

-..

I-4a[w-p(l+pa)]sin2(_)

1+ 4pa(1 + pa)sin2(_)

and is plotted in Fig.1 for p = 0.5, a = 5.3, and
w = 1.9. The growth factor has a strong high wave
number damping that makes this scheme receptive
to multigrid acceleration. Thus the approximate LU
scheme is written within the framework of the multi-

grid method to accelerate these calculations to a
steady state.

Analytical Steady Flow

A steady, quasi-two dimensional shear layer can
be modelled Is:

u = _[I + Rtanh[3] (26)
= 0 (27)

o (u,OaX_ 0¢)v.¢= T=,k _ -b_-=,+_, =0 (24)
where fl = 0.5 (y - ye)/O; fi = 0.5 (U 1 -[- U2); mu --

u2-ul ; R = 0.5 Au/fi; 0 is the momentum thickness;



Yc is the centerline; and ul and u2 are the velocities
of the two coflowing streams. A Clebsch decomposi-
tion that satisfies Eqs.(1), (4), (14), (15), (26), and
(27) can be written as:

ur° -- _[1 + IZtanhD] - ul (28)

:o = 0 (29)

X - z - fit[1+ Rtanh_] (30)

Y --9 (31)

: .ix+ _-_-mta.h_[a.+ _a.h_] (32)
L

Numerical Aspects

Shear layer calculations, characterized by ,1 =
4.0 re�s; u2 = 8.0 re�s; and 0 = 2.0 ram, are per-
formed on a 192x96 grid (Fig.2). This grid has a
uniform streamwise spacing of 1.6 mm and is al-
gebraically stretched in the cross-stream direction.
The cross-stream distribution has approximately 30
cells within the initial shear layer, 10 of which are
within the momentum thickness. The smallest cell is
0.2 mm thick and located at the centerline, while the
computational domain is approximately 0.1 m wide
and 0.3 m long.

Eq.(30) suggests that an infinite stretching and
shearingof the X materiallinesis produced as
t _ oo. Thus calculationsof a longdurationare

limitedin value,sincephysicalviscositynormally
actstodampen thisshearing.Furthermore,atthe
centerlineof the shearlayer(/_= 0),thegradient
OX
-_----,oo ast---,oo and thusEq.(27)

a¢_ .,o OX
N=0

becomes increasingly difficult to satisfy numerically.
In essence it becomes numerically indeterminant.
Thus cross-stream velocity disturbances, capable of
triggering the shear instability, are likely to be gener-
ated at the centerline. Despite these limitations, for
t << oo, the short term dynamics of rapidly grow-
ing initial disturbances can be simulated by these
inviscid equations.

The steady flow is reproduced numerically to
evaluate the scheme's fidelity. Even though the flow
is steady, the X material lines' time dependant be-
havior can be used to evaluate the scheme's perfor-
mance. The initial conditions are constructed ana-
lytically at t = 0 and the velocity potential is recast
as a perturbation on a uniform flow. Thus:

=., z + _ (33)

An inviscid noflux or parallel flow condition

O. r° O_ UroOX
Oy - _ ,4- _ = 0 (34)

is specified at both the top and bottom boundaries
of the domain while the outflow condition

,o o (: ox)o: =07 =_ +o,j\ _ =° (35)

and:

$(x,, y_)= o (36)

isspecifiedatz = zt.A steadyinflowcondition

.to= _[14- Rtanh#] - ul

Co _ O_ _ 0 (37)
az

aX
-----_1

az

is specified at z - z0.
Once the scheme's fidelity is verified, the rollup

of the shear layer is accelerated by oscillating in-
flow disturbances. The inflow boundary condition,
Eq.(37), is modified with an oscillating centerline:

(y- _o)
fl = 20

ftc = 11¢+ KO sin(cot) (38)

2,rS._
co--

0

where S, = 0.032isthe Strouhalnumber associ-
atedwiththeshearlayer'snaturalfrequency15and
K isa scalarconstant.The initialrollupoftheshear

layerresultsfromtheinviscidshearflowinstability16
and shouldbe simulatedaccurately.Subsequentde-
velopmentmay not evolvecorrectlysincevortices

growthroughthecontinousingestionofirrotational
fluid, and vortex pairing can occur at saturation, lz
However, a kinematic description assumes a conti-
nous mapping of the material lines which can un-
dergo stretching and folding but not breakage and
amalgamation. Consequently, an inviscid simulation
of these growing disturbances is most valid during
their initial amplification. Despite these limitations,
results from a kinematic-based scheme should con-
tribute to the understanding of fluid mixing because

from a kinematical viewpoint fluid mixing
is the efficient stretching and folding of ma-
terial lines and surfaces is

Furthermore, the tagging of homogenous subsonic
flows, both experimentally and numerically, is often
made difficult by the rapid diffusion of the marker



species. Thus coherent structures are often visu-
alized through Schlieren photographs of stratified
flows. 19 Consequently, a kinematic-based scheme,
capable of quantitative rather than simply qualita-
tive flow visualization, would be valuable.

Results

The first test case is a numerical reproduction
of the analytical steady flow. A constant time step
size of 0.01 ms is used in this calculation. Since this
steady flow simulation is both two dimensional and
inviscid, the following collection of first integrals

I, = [wnda n = 1, 2, ...oo (39)
.gO"

where w is vorticity, should remain constant over
the computational domain. As a measure of the
scheme's ability to reproduce this flow, changes in
circulation (I1) and enstrophy (/2), as well as the
maximum absolute error in the X material lines, are
monitored. The error in X is calculated with respect
to the analytical solution, Eq.(30); normalized by 0;
and meaningful only while the flow remains steady.

To illustrate the convergence acceleration pro-
duced by the multigrid scheme, both single and
multigrid convergence histories of the potential cal-
culation at t = 0.01 ms are shown in Fig.3. A six
multigrid level W cycle converged the average resid-
ual to o(10 -14 ) in roughly four iterations, each of
which is equivalent to approximately 25.7 work units
or fine grid calculations.

The initial conditions are assumed to exist for
-oo < z > +oo but in Fig.4 are shown only within
the domain encompassed by the computational grid.
While the calculated flow remains steady, the u r°
material fines remain identical to the initial condi-

tion (Fig.4a) and the X lines, as predicted from the
analytical solution, shear continously with the flow
(Fig.5).

This simulation also tests the inflow/outflow
boundary conditions since upstream travelling dis-
turbances, orders of magnitude larger than the in-
terior truncation errors of the discretised equations,
are often generated from downstream boundary con-
ditions. This problem is acute for zeroth order ex-
trapolations but seems not to exist, at least within
the time duration of interest, for a first order treat-
ment. One would expect to see significant varia-
tions in circulation and/or exponential growth in
enstropy if the boundary conditions were triggering
the shear flow instability. In fact, both circulation
(Fig.6) and enstrophy (Fig.7) remained essentially
constant with only an extremely small error in the
X material field (Fig.8) evident during the first 6000
time steps (t < 60 ms). Although this error grows
as it is convected, its growth is not exponential and
will not reach a size large enough to render the flow
unsteady for some time.

In fact, it is only after these first 6000 time
steps that one begins to see the excitation of the
shear flow instability and the start of its exponen-
tial growth. Cross-stream gradients of the X mate-
rial field increase in magnitude; with this behavior
comes an increasing potential to generate centerline
disturbances. Any existing initial disturbances do
not grow exponential from t = 0 and thus the shear
instability is more likely to have been triggered by
centerline disturbances generated at t > 50 ms. To
observe the rollup of the shear layer within a more
timely fashion and without the question of its nu-
merical origin, one must add some physical forcing
to the flow. By forcing the flow, the rollups can
be generated before the material lines have sheared
beyond a questionable accuracy.

The second test case is the streamwise devel-

opment of a forced shear layer. The amplitude of
the centerline oscillation is one tenth the momen-
tum thickness and therefore confined to within the
width of the smallest mesh cell. The frequency of
this oscillation corresponds to the natural frequency
Strouhal number of S, = 0.032 and a constant time
step size of 0.01 ms is again used in the time ad-
vancement. This inviscid simulation is most valid in
regions where the forced disturbances are being am-
plified and the resulting vortices are becoming fully
developed. Conversely, the accuracy of an inviscid
approach is likely to be reduced within preceding re-
gions where the vortices can pair and amalgamate.

Within the shear layer, the discrete contours of
the u r° material lines are equivalent to streaklines
passing through the inflow boundary. The evolu-
tion of these material lines is an important aspect
of flow visualization since streaklines can often re-
veal more information about an unsteady flow than
either streamlines or pathlines. 2°

The evolution of the ur° and X material lines

is shown in Fig.9 and Fig.10 where one can see the
shear flow instability develop from small amplitude
wave to nonfinear rollup. The linear growth of these
small amplitude waves can be seen in both the u"°
(Fig.ga-b) and the X (Fig.10a-b) material fields. A
distinct steepening of the u r0 material lines can be
observed in Fig.9b with their eventual rollup occur-
ing with subsequent evolution. The leading vor-
tex quickly becomes saturated (Fig.9d) while sub-
sequent vortices continue to grow as they convect
downstream. Since this is an inviscid simulation, the
internal rollups of the material lines are somewhat
removed from the more smoothly evolving viscous
phenomena. The inviscid shearing of the X material
lines produces a temporally increasing cross-stream
gradient that, when disturbed, can rollup infinitely.
A simple spiraling, however, does not occur because
within these vortical rollups, the material lines are
becoming increasingly difficult to resolve. From a
numerical perspective, the material lines are not just
passively convected by the flow but rather coupled



to its construction. Moreover, the accuracy of the
computed flow field is related directly to the reso-

lution of the material fields. Again it is the gross
shapes of the initial rollups that are most accurately
captured inviscidly. Subsequent rollups are not pro-
duced by the initial instability; are often the result
of vortex pairing; and the accuracy of their simula-
tion is more likely to be dominated by viscosity, or
the lack thereof.

The evolution of an individual X material line

is shown in Fig. 11. This line originates outside of the
domain and is convected through the inflow hound-
ary condition. The flow is assumed to be steady
upstream of the boundary and relative to the oscil-
lating centerline. Within Fig. 11 one can see the ma-
terial line stretch and fold as it convects downstream

through the large vortical structures. Within the
time duration shown from Fig.lla to Fig.lle, the
length of this material line has increased approxi-
mately 48 percent. By comparing these results to
the simulation of the analytical steady flow, one can
attribute 25 percent of this stretching to the pres-
ence of the vortical rollups.

Oscillations generated by the inflow forcing can
he seen in the circulation history, Fig.12. The mag-
nitude of these growing oscillations is within 0.18
percent and are likely to be overdamped by schemes
whose numerical stability depends upon explictly
added artificial dissipation. The enstrophy history
consists of an initially linear growth that transitions
into an exponential one after approximately 30 ms,

or three cycles of the inflow forcing (Fig.13). This
transition corresponds to the steepening of the small
amplitude waves which can be seen in Figs.9c-d.
Flow disturbances grow exponentially from t -- 0

and are reflected in the error history of the X ma-
terial field, Fig.14. This error grows exponentially
from t = 0 and ceases to be meaningful once the
shear instability becomes nonlinear. Comparisons
to the analytical steady flow are limited once the
flow becomes fully unsteady.

The stretching and redistribution of the shear
layer are depicted in the evolution of the X mate-
rial field's cross-stream gradients, Fig.15. For visual
clarity only the largest 10 percent of the gradient
field is contoured within each of these figures. One
can see how the shear layer bends, breaks (Fig.15c),
and ultimately evolves into a number of discrete
structures. Once the initial breakage occurs, the
shear layer continues to be drawn, pinched, and re-

distributed into discrete clumps (Figs.15c-15e). Ini-
tially these structures are formed at approximately
10 ms intervals, which corresponds to the period of

the inflow forcing. Eventually these structures are
stretched and bent into self-similar shapes as they
are convected downstream past the vortical rollups
(Figs.15f-15j).

Concluding Remarks

A kinematic decomposition of the incompress-
ible Euler equations was derived for the calculation

of unsteady vortical flows. Towards this goal, both a
uniformly second-order accurate, nonoscillatory con-
vection scheme; and an approximately LU factored

multigrid scheme were developed for unsteady and
steady calculations, respectively.

To test this approach, and verify the scheme's
fidelity, a two dimensional steady shear layer was cal-
culated and compared to its analytical solution. An
oscillating inflow was then introduced to accelerate
the shear layer's rollup. The bending and stretching
of the material lines as they are convected past the
growing vortical disturbances could be seen in these
simulations.

The value of this kinematic-based scheme can

be found within the quantitative visualization of
fluid mixing. Rapidly evolving phenomena can be
simulated inviscidly, while calculations of long dura-
tion or of time periodic flows will require the inclu-
sion of physical viscosity.
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